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Abstract
We study the entanglement properties of a molecular three-qubit system described by the
Heisenberg spin Hamiltonian with anisotropic exchange interactions and including an external
magnetic field. The system exhibits first-order quantum phase transitions by tuning two
parameters, x and y, of the Hamiltonian to specific values. The three-qubit chain is open-ended
so that there are two types of pairwise entanglement: nearest-neighbour (nn) and
next-nearest-neighbour (nnn). We calculate the ground and thermal state concurrences,
quantifying pairwise entanglement, as a function of the parameters x , y and the temperature T .
The entanglement threshold and gap temperatures are also determined as a function of the
anisotropy parameter x . The results obtained are of relevance in understanding the
entanglement features of the recently engineered molecular Cr7Ni–Cu2+–Cr7Ni complex which
serves as a three-qubit system at sufficiently low temperatures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement is a unique feature of quantum mechanical
systems with no classical analogue. In an entangled state,
two or more quantum particles have joint properties in
the form of non-local correlations rather than individual
identities. Entanglement is known to be a key resource
in quantum information processing (QIP) tasks such as
quantum computation, teleportation and cryptography [1].
Implementation of QIP protocols requires the assembly
of multi-qubit systems with the potential for generating
controlled entanglement. Natural examples of qubits, which
are two-level systems, include spin- 1

2 particles, photons
with two states of polarization and trapped ions with two
atomic states. In recent years, molecular nanomagnets
have been proposed as appropriate candidates for qubit
encoding and manipulation [2, 3]. A specific example is
provided by antiferromagnetic (AFM) Cr7Ni rings which
reduce to effective spin- 1

2 systems at low temperatures. Each
octagonal ring consists of one Ni2+ and seven Cr3+ ions
with AFM coupling between neighbouring ions. A variety
of experimental techniques have been used to characterize the
rings. The rings have spin- 1

2 ground states and behave as qubits
at sufficiently low temperatures as the excited state multiplets
remain unoccupied. Also the rings have been demonstrated

to possess long decoherence times, an ideal requirement for
several QIP tasks.

Recently, Timco et al [3] have engineered a coherent
coupling between two Cr7Ni rings, serving as molecular spin
qubits, via a central Cu2+ ion which acts as a third qubit.
The Cr7Ni–Cu2+–Cr7Ni complex is equivalent to a three-qubit
system with the Cu2+ ion serving as a ‘linker’ (figure 1). The
coupling between the spins of the rings is tunable by a proper
choice of the linker. In a microscopic approach, the spin
Hamiltonian describing the three-qubit system can be written
as [3]

H = H A + H B + H C + H AC + H BC, (1)

where the labels A, B and C correspond to the two rings and
the magnetic linker, respectively. The terms H A and H B

individually describe the Cr7Ni rings:

H A = H B =
8∑

i=1

Ji �Si · �Si+1

+
8∑

i=1

di S
2
i,z + Hdip + μB �B ·

8∑

i=1

��gi · �Si , (2)

with z along the ring axis. The successive terms in the
Hamiltonian correspond to isotropic exchange (Ji ), the axial
crystal field (di ), dipole–dipole couplings (Hdip) between eight
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Figure 1. A molecular three-qubit system in which the qubits A and
B represent two Cr7Ni rings (see figure 1(a) of [3]) and qubit C
represents the bridging ion Cu2+. The rings and the ion are effective
spin- 1

2 systems represented by solid arrows.

individual spins �Si and the Zeeman coupling to the magnetic
field �B, with ��gi being the gyromagnetic tensor. The term H C

in equation (1) is

H C = �B · ��gCu · �SCu (3)

whereas the terms H AC/H BC are

H AC = H BC = J ′ �SCu ·
(�SCr + �SNi

)
, (4)

where the spins �SCr and �SNi correspond to �S1 and �S8 in their
respective rings as these spins are located on the edge of the
octagon bound to the Cu link. Since J ′ � Ji ’s, the intra-
ring exchange constants, the low-temperature behaviour of the
Cr7Ni–Cu2+–Cr7Ni complex is determined by the splitting
of the lowest eight energy levels. The behaviour can be
reproduced in terms of an effective three-spin Hamiltonian [3]:

H = J̄
∑

i=A,B

�Si · �SC

+ Dex

∑

i=A,B

(
2Si,z SC,z − Si,x SC,x − Si,y SC,y

)

+ μB �B.
∑

i=A,B,C

��gi · �Si , (5)

where �SA,B,C represent spin- 1
2 operators, J̄ is the strength of

the effective Cu-ring isotropic exchange, ��gA,B are the g tensors

of the ring ground doublet, ��gC = ��gCu , and Dex is an effective
Cu-ring axial exchange originating from the projection of the
rings’ dipolar and crystal-field anisotropies. Equation (5)
represents the Cr7Ni–Cu2+–Cr7Ni system as a linear chain of
three coupled qubits with open boundaries. The three-qubit
system has ground and thermal states which are entangled. One
can focus on two types of entanglement: pairwise, i.e. between
two qubits, and three-party entanglement involving all three
qubits. The Greenberger–Horne–Zeilinger (GHZ) and Werner

(W) states [4–6] defined as

|GHZ〉 = 1√
2
(| ↑↑↑〉 + | ↓↓↓〉)

|W〉 = 1√
3
(| ↑↑↓〉 + | ↑↓↑〉 + | ↓↑↑〉)

(6)

represent two fundamentally non-equivalent entangled states
of three qubits. In the first case, the pairwise entanglement
for all the qubit pairs is zero and one has genuine three-
party entanglement known as the residual entanglement.
The nomenclature arises from the Coffman–Kundu–Wootters
(CKW) inequality [7] for a three-qubit system given by

τ1 � τ2 =
∑

j 	=i

C2
i j , (7)

where τ1 represents the one-tangle corresponding to the
entanglement between the i th qubit and the rest of the system
and C2

i j is the square of concurrence, a measure of the
entanglement between the i th and j th qubits. The one-tangle
τ1 is determined as τ1 = 4detρ(1), where ρ(1) is the single-site
reduced density matrix. The residual entanglement is given
by the difference between τ1 and τ2 and hence provides a
measure of quantum correlations which cannot be expressed
in terms of pairwise correlations. The GHZ state has the
maximum possible value of 1 for the three-party (residual)
entanglement. The W state, on the other hand, possesses
only pairwise entanglement between all qubit pairs and the
magnitude of the residual entanglement is zero. Timco et al [3]
have provided a prescription for the generation of GHZ and
W states using a sequence of microwave pulses applied to the
molecular three-qubit system.

In this paper, we study the entanglement properties of the
ground and thermal states of the molecular three-qubit system
described by the reduced Hamiltonian in equation (5). We
especially focus on the variation of entanglement measures
as a function of the parameters of the Hamiltonian. Wang
et al [8] have earlier studied thermal entanglement in the three-
qubit Heisenberg XXZ model. The Hamiltonian considered
by them satisfies periodic boundary conditions and includes
anisotropic exchange interaction and magnetic field terms.
The molecular three-qubit system considered in this paper
has the structure of an open chain and the entanglement
features turn out to be different from those of the three-qubit
Heisenberg ring. The experimental demonstration that the
coupling between the molecular spin clusters can be controlled
without disturbing the intra-cluster interactions provides the
impetus for characterizing the entanglement properties of the
molecular three-qubit system.

2. Ground state entanglement

We consider the molecular three-qubit system to be in an
external magnetic field pointing in the z direction. The

2
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Hamiltonian (equation (5)) then reduces to

H = J̄
∑

i=A,B

�Si · �SC

+ Dex

∑

i=A,B

(
2Si,z SC,z − Si,x SC,x − Si,y SC,y

)

+ gμB B
∑

i=A,B,C

Sz
i . (8)

This can be rewritten in the form

H̄ = H/ J̄ = (1 + 2x)
(
SA,z SC,z + SB,z SC,z

)

+ 1
2 (1 − x)

(
S+

A S−
C + S−

A S+
C + S+

B S−
C + S−

B S+
C

)

+ y
(
SA,z + SB,z + SC,z

)
, (9)

where x = Dex/ J̄ , y = gμB B/ J̄ and S+, S− are the rais-
ing and lowering operators. Since the z component of the total
spin, Stot

z , is a conserved quantity, the eigenvalue problem can
be solved in the separate subspaces corresponding to the dif-
ferent values of Stot

z . The eigenvalues and the eigenstates are
given by,

Stot
z = + 3

2

|ψ1〉 = | ↑↑↑〉
E1 = 1

2 (1 + 2x + 3y)
(10)

Stot
z = + 1

2

|ψ2〉 = 1√
2
(−| ↑↑↓〉 + | ↓↑↑〉)

E2 = y

2

(11)

|ψ3〉 = 1

A(x)
(| ↑↑↓〉 − R(x)| ↑↓↑〉 + | ↓↑↑〉)

E3 = 1
4 {2y − U+(x)}

(12)

|ψ4〉 = 1

B(x)
(| ↑↑↓〉 − S(x)| ↑↓↑〉 + | ↓↑↑〉)

E4 = 1
4 {2y − U−(x)}

(13)

Stot
z = − 1

2

|ψ5〉 = 1

A(x)
(| ↓↓↑〉 − R(x)| ↓↑↓〉 + | ↑↓↓〉)

E5 = 1
4 {−2y − U+(x)}

(14)

|ψ6〉 = 1

B(x)
(| ↓↓↑〉 − S(x)| ↓↑↓〉 + | ↑↓↓〉)

E6 = 1
4 {−2y − U−(x)} .

(15)

|ψ7〉 = 1√
2
(−| ↓↓↑〉 + | ↑↓↓〉)

E7 = − y

2

(16)

Figure 2. Two lowest energy levels (i) E1 and E8 and (ii) E3 and E5

of the Hamiltonian (equation (9)) versus the parameter x for y = 0.

Stot
z = − 3

2

|ψ8〉 = | ↓↓↓〉
E8 = 1

2 (1 + 2x − 3y) .
(17)

In the above equations

U±(x) =
{

1 + 2x ±
√

3
(
4x2 − 4x + 3

)}
(18)

R(x) = −U+(x)
2(−1 + x)

(19)

S(x) = −U−(x)
2(−1 + x)

(20)

A(x) =
[

2 +
{ −U+(x)

2(−1 + x)

}2
] 1

2

(21)

B(x) =
[

2 +
{ −U−(x)

2(−1 + x)

}2
] 1

2

. (22)

We first consider the case of zero magnetic field (y = 0).
The eigenvalues then become

E1 = E8 = 1 + 2x

2

E2 = E7 = 0

E3 = E5 = −U+(x)
4

E4 = E6 = −U−(x)
4

.

(23)

We assume x to range over both positive and negative
values. Figure 2 shows a plot of the two lowest energy levels
of the Hamiltonian (equation (9)) versus the parameter x . Each
energy level is doubly degenerate. The nature of the ground
states changes at x = −2, bringing about a first-order quantum
phase transition (QPT). When x is< −2, the ground states are
the separable states |ψ1〉 and |ψ8〉. When x is> −2, the doubly
degenerate ground state is described by the wavefunctions
|ψ3〉 and |ψ5〉. At x = 1, however, the Hamiltonian (9)

3
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(a) (b)

Figure 3. Variation of concurrences (a) CAC and (b) CAB versus x for y = 0.

becomes Ising-like, i.e. loses its quantum character, and the
degenerate ground states, | ↑↓↑〉 and | ↓↑↓〉, are separable.
We now discuss the entanglement properties of the ground
states. Because of the degeneracy, the ground state density
matrix describes a mixed state with

ρ = 1
2 (|ψ3〉〈ψ3| + |ψ5〉〈ψ5|) . (24)

The reduced density matrix ρi j , (i, j = A, B,C) is obtained
from ρ by tracing out the spin degrees of freedom associated
with the spins which are not located at the sites i and j . The
reduced density matrix in the standard basis, {| ↑↑〉, | ↑↓〉,
| ↓↑〉, | ↓↓〉}, has the structure

⎛

⎜⎝

u 0 0 0
0 w1 y� 0
0 y w2 0
0 0 0 v

⎞

⎟⎠ . (25)

The concurrence Ci j , a measure of the entanglement between
a pair of spins at sites i and j , is given by [9, 10]

Ci j = 2 max
(
0, |y| − √

uv
)
. (26)

Figures 3(a) and (b) show the variation of CAC and CAB versus
x . The analytical expressions for the concurrences are

CAC = CBC = 2 max

(
0,

∣∣∣∣
R

A2

∣∣∣∣ − 1

2A2

)

CAB = 2 max

(
0,

∣∣∣∣
1

A2

∣∣∣∣ − R2

2A2

)
.

(27)

The variation of CBC as a function of x is identical
with that of CAC . We remind ourselves that A and B
are the boundary spins and C the central spin. A jump
in the magnitude of the concurrence indicates a first-order
QPT [11–14] which, as already mentioned, occurs at x =
−2. CAC and CBC both become zero at x = 1 due to the
separability of the ground state density matrix and then rise
as x is increased to attain a saturation value CAC = 1+2

√
3

6+2
√

3
for large x . The entanglement between the boundary spins,
however, has a non-zero value only for negative values of x
and that too in a restricted range of x values.

We next consider the case of a non-zero magnetic field
(y 	= 0). Figure 4 shows the plots of the two lowest energies,

Figure 4. Plot of the two lowest energies (i) E8 and (ii) E5 versus x
for y = 0.5.

E5 and E8, versus x for y = 0.5. One finds that a first-order

QPT occurs at a specific value of x = xc
( = −

√
1
2 −

√
7
12

)
,

indicating a change in the nature of the ground state. Figure 5
shows the variation of E5 and E8 as a function of y for x = 0.5.
Again, one notes the occurrence of a first-order QPT at a
specific value of y = yc. The external magnetic field removes
the ground state degeneracy of the zero-field case and the three-
qubit system has a unique ground state. Figures 6(a) and (b)
show the variation of the concurrences CAC and CAB versus
x for y = 0.5. In this case, the analytical expressions for the
concurrences are

CAC = CBC = 2 max

(
0,

∣∣∣∣
R

A2

∣∣∣∣
)

CAB = 2 max

(
0,

∣∣∣∣
1

A2

∣∣∣∣

)
.

(28)

In zero magnetic field (y = 0), the next-nearest-neighbour
(nnn) concurrence CAB has non-zero values only in a restricted
range of negative x values (figure 3(b)) whereas in the presence
of a magnetic field (y 	= 0), CAB is non-zero in a range of
both negative and positive x values. The magnitude of the
nnn entanglement is less than that of the nn entanglement for
both y = 0 and y 	= 0. As y increases, one finds that xc,
the first-order QPT point, shifts towards more positive values.
For sufficiently high values of y, entanglement exists only for
positive values of x . This is so provided y is less than the

4
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Figure 5. Plot of the lowest energy levels (i) E8, (ii) E5, (iii) E3 and
(iv) E1 as a function of y for x = 0.5.

critical value yc (which depends upon x) at which a first-order
QPT takes place to a separable ground state. Figures 7(a)
and (b) show the plots of the nn and nnn concurrences, CAC(=
CBC) and CAB , respectively, versus y for x = 0.5. The
concurrences have constant values for y < yc, the QPT point,
and jump discontinuously to zero values at y = yc. As x
increases, the value of yc also increases. In the case of a non-
zero magnetic field, y 	= 0, the ground state is non-degenerate
and the density matrix represents a pure state. In this case,
the one-tangle τ1 (defined in equation (7)) can be calculated.
For any choice of the central spin, the residual entanglement
involving three spins is found to be zero so that only pairwise
entanglement exists in the ground state. The ground states thus
belong to the class of W rather than GHZ states.

3. Thermal state entanglement

We next discuss the finite-temperature entanglement properties
of the molecular three-qubit system. The thermal density
matrix ρ(T ) = 1

Z exp (−βH )(β = 1
T , kB = 1) now replaces

the ground state density matrix with Z denoting the partition
function of the system. The reduced density matrix ρi j(T ) has
the same form as in equation (26) with Ci j (T ): given by [15]

Ci j(T ) = 2

Z
max

(
0, |y(T )| − √

u(T )v(T )
)
. (29)

For the three-qubit system, the thermal density matrix is

ρ(T ) = 1

Z

8∑

k=1

exp (−βEk)|ψk〉〈ψk |, (30)

where the |ψk〉 and Ek are given in equations (10)–(17) or the
general case y 	= 0. When y = 0, the energy eigenvalues are
as shown in equation (23). We first consider the case of zero
magnetic field (y = 0). The matrix elements u, v and y of the
reduced density matrix ρAC(T ) are

u = v =
(

e
−E1

T + 1

A2
e

−E3
T + 1

B2
e

−E4
T + 1

2

)
(31)

y = y� =
(

−2R

A2
e− E3

T − 2S

B2
e− E4

T

)
. (32)

The reduced density matrix ρBC(T ) has the same matrix
elements as in equations (31) and (32). For the nnn
concurrence, CAB , the matrix elements of the reduced density
matrix are

u = v =
(

e
−E1

T + R2

A2
e

−E3
T + S2

B2
e

−E4
T

)
(33)

y = y� =
(

2

A2
e− E3

T + 2

B2
e− E4

T − 1

)
. (34)

Figures 8(a) and (b) show the plots of CAC and CAB ,
respectively, as a function of x for different values of the
temperature T . As T increases, the range of x values for which
CAC 	= 0 shifts towards more positive values. Figures 9(a)
and (b) show CAC and CAB versus T for negative values of
x . One can obtain similar plots for CAC when x is > 0. For
both the nn and nnn entanglements, one can define threshold
temperatures T (1)

C and T (2)
C , respectively, beyond which the

concurrences [8, 16] have zero values. Figures 10(a) and (b)
show how T (1)

C and T (2)
C vary with x for different values of y.

For a non-zero magnetic field, y 	= 0, the matrix elements
of the reduced density matrix ρAC(= ρBC) are given by

u =
(

e− E1
T + 1

2
e− E2

T + 1

A2
e− E3

T + 1

B2
e− E4

T

)
(35)

v =
(

e− E8
T + 1

2
e− E7

T + 1

A2
e− E5

T + 1

B2
e− E6

T

)
(36)

(a) (b)

Figure 6. Variation of concurrences (a) CAC and (b) CAB versus x for y = 0.5.
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(a) (b)

Figure 7. Variation of concurrences (a) CAC and (b) CAB versus y for x = 0.5.

(a) (b)

Figure 8. Variation of concurrences (a) CAC and (b) CAB versus x at different temperatures T with y = 0. The different temperature values
are (a) (i) T = 0, (ii) T = 0.5, (iii) T = 1.5 and (b) (i) T = 0, (ii) T = 0.1, (iii) T = 0.3.

(a) (b)

Figure 9. Variation of concurrences (a) CAC and (b) CAB versus T for different negative values of x with y = 0. The different x values are (i)
x = −1.5, (ii) x = −1 and (iii) x = −0.55 for both (a) and (b).

y = y� =
(
− R

A2
e− E3

T − S

B2
e− E4

T − R

A2
e− E5

T − S

B2
e− E6

T

)
.

(37)
The corresponding matrix elements for the nnn reduced density
matrix are

u =
(

e− E1
T + R2

A2
e− E3

T + S2

B2
e− E4

T

)
(38)

v =
(

e− E8
T + R2

A2
e− E5

T + S2

B2
e− E6

T

)
(39)

y = y� =
{
−1

2

(
e− E2

T + e− E7
T

)
+ 1

A2

(
e− E3

T + e− E5
T

)

+ 1

B2

(
e− E4

T + e− E6
T

)}
. (40)

Figures 11(a) and (b) show the plots of the nn and nnn
entanglements, CAC and CAB , respectively, versus x for y =
0.5 and at different values of T . Figure 12(a) shows the
plot of CAC versus T for different negative values of x with
y = 0.5. Similar plots are obtained in other ranges of x values.
Figure 12(b) shows how CAB varies as a function of T .

6
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(a) (a)

Figure 10. The threshold entanglement temperature (a) T (1)
C versus x for nn entanglement and (b) T (2)

C versus x for nnn entanglement with
(i) y = 0.1, (ii) y = 0.5 and (iii) y = 1. T (1)

C has a very weak dependence on the values of y.

(a) (b)

Figure 11. Variation of concurrences (a) CAC and (b) CAB versus x at different temperatures T with y = 0.5. The different temperature
values are (a) (i) T = 0, (ii) T = 0.5, (iii) T = 2 and (b) (i) T = 0, (ii) T = 0.5.

(a) (b)

Figure 12. Variation of concurrences (a) CAC and (b) CAB versus T for different negative values of x with y = 0.5. The different values of x
are (i) x = −1.5, (ii) x = −1 and (iii) x = −0.5 for both (a) and (b).

We lastly calculate the entanglement gap tempera-
ture [17, 18], TE, as a function of x for both zero and non-zero
y. TE is determined from the relation U(TE) = Esep, where
U(T )

( = − 1
Z
∂Z
∂β

)
is the thermal energy at temperature T and

Esep is the ground state energy of the classical spin model cor-
responding to the three-qubit Hamiltonian in equation (5). Esep

can be easily calculated, e.g. Esep = 1
2 (−1−2x −y) for x � 0.

For temperature T < TE, the thermal state is entangled. Fig-
ure 13 exhibits the variations of TE versus x for different values
of y.

4. Summary and discussion

In this paper, we have obtained quantitative measures of
pairwise entanglement in a molecular three-qubit system as a
function of two parameters x and y. The system represents the
recently engineered Cr7Ni–Cu2+–Cr7Ni complex consisting
of two Cr7Ni rings coupled via a central Cu2+ ion. The
parameters x and y appearing in the qubit Hamiltonian
(equation (9)) have their origins in an effective Cu-ring
axial exchange due to the projection of the rings’ dipolar

7
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Figure 13. Variation of the entanglement gap temperature, TE, versus
x for different magnetic fields. The different values of y are (i)
y = 0, (ii) y = 0.5 and (iii) y = 1.

and crystal-field anisotropies and an external magnetic field,
respectively. Timco et al [3] have provided an experimental
demonstration that the coupling between molecular spin
clusters can be manipulated by altering the nature of the linker
ions. This opens up the possibility of chemically controlling
the generation of entanglement in spin systems. The molecular
three-qubit system studied in this paper belongs to a family
of clusters with AFM exchange interactions between the nn
ions and a spin- 1

2 ground state. The simplest case is that of a
finite chain with an odd number of S = 1

2 spins and dominant
AFM interactions between the nn spins. An alternative way
of obtaining an S = 1

2 ground state is to replace a single spin
in an AFM chain, containing an even number of spins, by a
spin of different magnitude such that the ground state spin is of
magnitude 1

2 . The Cr7Ni ring provides an example of the latter
possibility.

In general, the arrangement of spins in a chain can be
either linear or cyclic. The molecular three-qubit system
studied in this paper is a linear-chain complex, whereas the
three-qubit chain studied in [8] is cyclic in nature. Cyclic
spin chains with an odd number of antiferromagnetically
coupled spins have degenerate ground states due to magnetic
frustration. For a three-spin cyclic chain, the anisotropic
Heisenberg XXZ model has a fourfold degenerate ground state
in zero magnetic field [8]. In the presence of an external
magnetic field, the ground state is doubly degenerate. The
effective three-qubit Hamiltonian (equation (9)) has the form of
the anisotropic Heisenberg XXZ Hamiltonian but with a linear,
i.e. an open-ended, structure. In this case, the ground state is
doubly degenerate in zero magnetic field (y = 0) and non-
degenerate when y 	= 0. The cyclic chain has a greater ground
state degeneracy because of frustration.

There are prominent differences in the entanglement
features of cyclic and linear spin chains. As shown in [8], in
the case of the AFM cyclic XXZ model, there is no pairwise
entanglement, as measured by concurrence, for all values of the
anisotropy constant. At T = 0 also, the concurrence is zero for
the AFM case. In contrast, the AFM linear chain has pairwise
entanglement at both T = 0 and T 	= 0 (figures 3 and 8).
One now distinguishes between nn and nnn entanglements. In
the AFM case, the nnn concurrence CAB is zero at zero and

finite temperatures whereas the nn concurrence CAC (= CBC)

is non-zero at both T = 0 and T 	= 0. Comparing figures 3
and 6, one finds that, on inclusion of the magnetic field, the
range of x values for which CAB (the nnn concurrence) is 	= 0
is considerably extended. For a specific value of x , there is,
however, a critical value of yc of y such that the pairwise
entanglement vanishes when y > yc. Earlier studies [8, 10]
have shown that the entanglement between two spins in an
AFM chain can be increased by raising the temperature or
the external magnetic field in specific ranges. This is true for
our three-qubit system also. In figures 12(a) and (b), curve
(i) shows the increase of both CAC and CAB with temperature
T . We have further shown that only pairwise entanglement
exists in the ground state with y 	= 0, i.e. there is no three-
qubit entanglement as exists in the GHZ state (equation (6)).
One interesting feature of the linear three-spin chain relates
to the variation of the threshold entanglement temperatures
T (1)

C and T (2)
C versus x for different values of y. As shown

in figure 10(a), the T (1)
C versus x plot depends weakly on

the values of y. The threshold temperature T (2)
C , for nnn

entanglement, however, varies more prominently with y. In
the case of the cyclic chain, the single threshold temperature
depends on both x and y. As shown in figure 13, the plots of
the entanglement gap temperature, TE, versus x are different
for different values of y. In fact, TE has a non-monotonic
dependence on the values of y (the y = 1 curve lies in between
the y = 0.1 and y = 0.5 curves). One further notes, from
figures 10 and 13, that the entanglement gap and threshold
temperatures are different for the same values of the parameters
x and y. In fact, one finds that T (2)

C < TE < T (1)
C . Figures 4–7,

figures 11 and 12 have been obtained by fixing either x or y at a
specific value. The observations are, however, general in nature
and hold true in extended ranges of x and y values. In the
model studied by us, we have assumed that the gyromagnetic
factors gA, gB and gC are of equal amplitude g (equation (8)).
In the case of the engineered three-qubit system, the diagonal
tensors gA,B and gC are different. Assuming gA = gB 	= gC ,
(gC(zz) = 2.07 and gA,B(zz) = 1.79, as quoted in [3]), we
find no qualitative changes in the results reported in sections 2
and 3. It will be of interest to study the general case of the
magnetic field pointing in an arbitrary direction.

The three-qubit molecular cluster exhibits first-order
QPTs at specific values of x and y. In figure 3(a), the QPT
at x = −2 separates two phases, for x < −2 the ground
state has no entanglement whereas for −2 < x < 1, the
ground state, described by the mixed state in equation (24),
has pairwise entanglement. Similarly, as shown in figure 7, a
first-order QPT occurs at y = yc. The point x = 1 is of special
interest as the ground and thermal states become separable at
this point. The threshold entanglement temperatures, T (1)

C and
T (2)

C , drop sharply to zero at x = 1. The first-order transition
points can be shifted by changing the parameters x and y.
For example, the transition point xc can be shifted towards
higher values by increasing y. The first-order QPTs are marked
by discontinuities in the magnitude of both the nn and nnn
concurrences associated with the ground states. The molecular
three-qubit system, Cr7Ni–Cu2+–Cr7Ni, has been specifically
engineered with QIP applications in mind. Since entanglement
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is a fundamental resource in such applications, a knowledge of
its dependence on the relevant parameters of the system will be
of use in the designing and implementation of QIP protocols.
With possibilities for controlling the couplings in molecular
qubit systems [3] and realizations of spin Hamiltonians in
optical lattices [19], some of the theoretical results could be
observed in actual experiments.
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